NN basics 2

‘ ;‘g:“’.:h".:'7

’-.-4'."7". A o L)

L R o e Rk

N e e N T
p . NP -“"rilaws -

Y m
oF ™|
it
T

g

e

£

[ )
i =)
™
=
B

.‘*\!

R ET)
»

-l se

-

. 5 )
oV RessnaSiyw
Srliote e dod gl
M AL

8 |-
Wi Y _
] WO —

) o Y 4
B R ool g LB :
o e WL

—on

\ ""\
A 4




References
ttp://cs231n.stanford.edu/index.html

http://www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lectures.html

http://www.cs.cmu.edu/~16385/



http://cs231n.stanford.edu/index.html
http://www.cs.cornell.edu/courses/cs5670/2019sp/lectures/lectures.html
http://www.cs.cmu.edu/~16385/

contents

Chain rule
ConvNets

— Convolution layer
— Pooling layer
Overfitting
Architectures

— Alexnet (dropout)
— VGG
— ResNet (batch norm)



Loss derivation

* How do we actually do Vy,L?



Bad idea- by hand
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Problem: Very tedious: Lots of
matrix calculus, need lots of paper

Problem: What if we want to
change loss? E.g. use softmax
instead of SVM? Need to
re-derive from scratch =(

Problem: Not feasible for very
complex models!
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Good idea- back propagation

* We are using the chain rule for gradient calculation:
dz dz dy
de dy dx
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f(z,y,2) = (z + y)z
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Backpropagation: a simple example X -2

v =ervs | OO

eg.x=-2,y=5,2z=-4

fow

This is called- the forward pass
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Backpropagation: a simple example X -2

f(z,9,2) = (2 +)2 Lo

eg.x=-2,y=5,2z=-4

Step O: initialization o9 _4
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Backpropagation: a simple example
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Backpropagation: a simple example

f(z,y,2) = (z + y)z
eg.x=-2,y=5,z=-+4

g=z+y F=15=1

X
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LR
y 5 '

Zz
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-4

4

3
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Iterative step: |9/ _9/ %a_ _, ,__,
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Backpropagation- conclusions

* All that we need to know in each junction is:
— The local gradient from the junction’s equation.
— the chain rule result that was “back propagated” to the junction.

L
“local gradient”
= d
PN
. A
oL
0z
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Another example: f(w,z)

w0 2.00

1.00 @ -1.00 exp 037 (1) 137 m 0.73
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Another example:

f(w,z)

1

i + e —(wozo+wy 1 +w;)

We want to find:
of of of

aWO ’ 6w1 ’ aWZ




- 1 We want to find:
1 + e (wozo+wy 21 +w,) of of of
aWO ’ 6w1 ’ aWZ

Another example: f(w,z)
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Another example:  f(w,z) = : We want to find:
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_ B 1 We want to find:
Another example:  f(w,z) = 15 o—(womotwrz ) of of of
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- 1 We want to find:
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Another example: f(w,z)

x0 -1.00 - [0.2] x[1]=0.2

400

w2 -3.00

Jlg) =c+= — = =1



Another example:

f(w,z)
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Another example:  f(w,z) = . We want to find:
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Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input activation

Wax

1 —> —> 4 [O

3072 10 x 3072

weights 10



Fully Connected Layer

32x32x3 image -> stretch to 3072 x 1

input

1 —
3072

Wax

10 x 3072
weights

activation
— 1 [O
/ 10
1 number:

the result of taking a dot product
between a row of W and the input
(a 3072-dimensional dot product)



Convolution Layer

32x32x3 image -> preserve spatial structure

32 height

3 depth



Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




ConVO|UtIO n Laye r Filters always extend the full
. depth of the input volume

32x32x3 image /
oxox3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32




Convolution Layer

32x32x3 image

ox5x3 filter
32 74
I| Convolve the filter with the image
i.e. “slide over the image spatially,

computing dot products”

32

Number of weights: 5x5x3+1=76

(vs. 3072 for a fully-connected layer)
(+1 for bias)



Convolution Layer

___— 32x32x3 image

ox5x3 filter w
=
the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image

32 (i.e. 5*5*3 = 75-dimensional dot product + bias)

3 wiz+b

™~~~ 1 number:




Convolution Layer

activation map

___— 32x32x3 image

5x5x3 filter /
=
@>O .

convolve (slide) over all

spatial locations
32 28




Convolution Layer

&1

I

—

V
——0

32

consider a second, green filter

32x32x3 Image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

4

L

28



For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

activation maps

Y

Convolution Layer

32 A

3 6

28

We stack these up to get a “new image” of size 28x28x6!

(total number of parameters: 6 x (75 + 1) = 456)



Convolution: Stride

During convolution, the weights “slide” along the input to
generate each output

Weights
L

Output

Input
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Convolution: Stride

During convolution, the weights “slide” along the input to

generate each output

Input

Recall that at each position,
we are doing a 3D sum:

h' = zxrzjijk +b

ijk

(channel, row, column)



Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

Input
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Convolution: Stride

But we can also convolve with a stride, e.g. stride = 2

Output

- Notice that with certain
strides, we may not be able to
cover all of the input

- The output is also half the
Size of the input

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

OO0 0|]0]10]10(O0

Output

||l O || O | OO | O | O
||l O || O |]OC|OC]O|O

Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

OpFpO P00 0]|0(O0

Output
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Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

OO0 |0 pFOFO O O

Output
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Input



Convolution: Padding

We can also pad the input with zeros.
Here, pad = 1, stride = 2

O(O0]010]10FO 0O

Output

||l O || O |]OC|OC]O|O
|| O || O |OC O | O | O

Input
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stride s
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O1010[0]101|Q0 0
0 0
0 kernel| & 0
0 0
0 0
0 0
0 0
0 0
OCl1010[0]101|O0 0
28 width w._ P

ne output?

We can choose different
parameters for the
convolution:

Wi, +2p — k
WO'LLt — ok S p + 1
Such that w,,¢ is an int.




Stacking conv layers

« What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?



Stacking conv layers

« What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
« Their receptive fields are the same!

two successive

) 5x5 convolution
3x3 convolutions



Stacking conv layers

« What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
* Their receptive fields are the same!

* Less weights to learn! assuming C channels input and output- the
single 5x5 CONV layer would contain € X (5 X5 X C) =
25C* parameters, while the three 3x3 CONV layers would only
contain 2 x (C x (3 x 3 x ()) = 18C>.
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non-linearities between the layers make their features more expressive.



Stacking conv layers

What is better? One layer of 5x5 kernel or 2 layers of 3x3 kernel?
Their receptive fields are the same!

Less weights to learn! assuming C channels input and output- the
single 5x5 CONV layer would contain € X (5 X5 X C) =

25C* parameters, while the three 3x3 CONV layers would only
contain 2 x (C x (3 x 3 x ()) = 18C>.

non-linearities between the layers make their features more expressive.

In many architectures 2 layers of 3x3 kernel is the way to go!

Adding strides (and padding where needed) can make the receptive
fields even larger with fewer weights to learn.
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Pooling

For most ConvNets, convolution is often followed by pooling:

- Creates a smaller representation while retaining the
most important information

- The "max” operation is the most common



Pooling

- makes the representations smaller and more manageable
- operates over each activation map independently:

224x224x64
112x112x64

pool

I

224 —
38 downsampling
112

224




Max Pooling

Single depth slice

1112 | 4

max pool with 2x2 filters
5 (6|7 |8 and stride 2
312|11]0
112 | 3| 4




Example ConvNet

CONV CONV POOLCONV CONV POOL CONV CONV POOL FC
l RelU l RelU

v

ReLU RelLU l

RelLU l ReLUl (Fully-connected)

« y }

truck
car

girplane

Ship

horse

T &‘» —
HNOEEREERN -
INEEENRENRE —

ERANKERDAE EEQ =

10x3x3 conv filters, stride 1, pad 1
2x2 pool filters, stride 2 Figure: Andirej Karpathy



Layer depth

First layers detect simple patterns (colors, edges, etc.)

Deeper layers detects more complex patterns which is built upon the output
of the first layers.

Great example:
https://www.youtube.com/watch?v=AgkflQ41GaM



https://www.youtube.com/watch?v=AgkfIQ4IGaM







e Conv colab
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e Overfitting: analysis that
corresponds too closely or
exactly to a particular set of
data and may therefore fail
to fit additional data or
predict future observations
reliably.

* Underfitting: insufficiently
modeling the relationship of
the data points.

Overfitting

Under-fitting

Optimal-fitting Over-fitting

Regression

Classification

Deep learning




Overfitting

e QOverfitting is one of the biggest problems in NN.
* Itis said that for a net to not overfit we need X10 data-samples as weights.
 What to do when you don’t have millions of examples?
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Example of trying to fit small dataset to a model with a lot of DOFs.



Remove outliers

* Clean the data so that that its variance would be relatively small.
* With a small dataset- even one outlier datapoint can be problematic.

Outlier = Outlier removed

Also a bat — but not what we looked for



Augmentations

* Technique used to increase the amount of data by adding slightly
modified copies of already existing data

 Examples: rotation, translation, scale, shear, brightness, contrast, noise, crop,
warping etc... 5 " ~




Cross validation

« Partitioning a sample of data into complementary subsets and
validating the analysis on the other subset. Validation results are
averaged over the rounds to give an estimate of the model's predictive
performance.

* The final step is to train the model on the entire dataset and by doing
you get more training data because you don’t need a validation set.

« Downside: training time is longer.
— [

— - .

=T ==

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%




Transfer learning

* Take a pretrained model on a larger similar dataset and train again a subset of
its layers to your new dataset.

* Theidea is that the features learned in the first layers are still relevant to your

data, and all you need is to train the more complex layers near the output to
learn your new data.



1. Train on Imagenet

-n
g
o

MaxPool

MaxPool

Conv-256
Conv-256
MaxPool
Conv-128

-
g
o

MaxPool
Conv-64
Conv-64

il

2. Small Dataset (C classes)

FC-C

MaxPool

Conv-512

MaxPool
| Conv-512 |
| Conv-512 |

Conv-256
| Conv-256 |

| Conv-64 |
Conv-64

!

X

Reinitialize
this and train

> Freeze these

J

Transfer learning

3. Bigger dataset

FC-C
FC
FC

MaxPool |

Conv-512
Conv-512

MaxPool
Conv-512
Conv-512

MaxPool |
|_Conv-256 _|
|_Conv-256 _|
| MaxPool |
| Conv-128 |
| Conv-128 |

| MaxPool |
|_Conv-64 |
Conv-64 )

-4096__| (+—— Train these
-4096

With bigger
dataset, train
more layers

> Freeze these

Lower learning rate
when finetuning;
1/10 of original LR
is good starting
point

very similar very different
dataset dataset
very little data | Use Linear You're in
Classifier on trouble... Try
top layer linear classifier
from different
stages
quite a lot of Finetune a Finetune a
data few layers larger number

of layers




Overfitting- the upside

* Overfitting isn’t always bad- there is a known trick to check the correctness of
your NN: take a small batch of data and try intentionally to overfit it!

* This will show you if you have any underlying problems in your net
architecture before you start train.
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The winner of the 2012 IMAGENET competition (classification % of top 5 out

of 1000 labels).

224X224X3 input.
8 learnable layers.

61M parameters.

Alexnet

Image: 224 (height) x 224 (width) x 3 {channels)_
Convolution with11x11 I{ernel+4stride:54x54x96:
v RelLu |

Pool with 3x3 max. kernel+2 stride: 26 x26x96 |

Convolution with 5x5 kernel+2 pad:26 x26 x256 |

v Relu |
Pool with 3x3 max.kernel+2stride:12x12x256

Convolution with 3x3 kernel+1 pad:12x12x384 |

 Relu

Convolution with 3x3 kernel+1 pad:12x12x384

L Relu

Convolution with 3x3 kernel+1 pad:12x12x256

' Relu

Pool with 3x3 max.kernel+2stride:5x5x256
v flatten

Dense: 4096 fully connected neurons
 RelLu, dropout p=0.5

Dense: 4096 fully connected neurons
v Rel.u, dropout p=0.5
Dense: 1000 fully connected neurons

v Softmax



Alexnet

* Interesting facts:

— The first winner of IMAGENET who used NN- started the NN trend we are feeling
now.

— Not really used today.
— Used dropout as a technique to avoid overfitting.

|
2.5 ‘

Classification Error %

0 200000 400000 600000 800000 1000000
Number of weight updates



dropout

Neuron is dropped from the network with a probability of 0.5. When a
neuron is dropped, it does not contribute to either forward or backward
propagation.

Every input goes through a different network architecture, as a result,
the learnt weight parameters are more robust.

During testing, there is no dropout and the whole network is used, but
output is scaled by a factor of 0.5 to account for the missed neurons
while training.

Dropout increases the number of iterations
needed to converge by a factor of 2.

(a) Standard Neural Net



VGG16

Winner of IMAGENET 2014 classification challenge.
16 layers (there are also other variations with 11,13 and 19 layers).
138M parameters.

Used small receptive fields with stacked conv layers (shown before)-
compared to 11X11 and 5X5 in AlexNet, her there is only 3X3 layers.

convl

Still in use today!

conv2

fco fe7 fc8

1x1 x.4096 1 x 1 x 1000

28 x 28 x 512

.q’)
56 x 56 x 256 7x7x512

@ convolution+ReLU
( """ max pooling

_—[] fully connected+ReLU




34-layer residual

image

ResNet
Winner of IMAGENET 2015 classification challenge.

152 layers (there are also other variations with 18,34,50 and 101 layers).
60M parameters (<0.5X VGG16!!!).
Still in use today!
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ResNet

* Interesting blocks:
— Batch norm (for vanishing gradient problem).
— Residual block (for train accuracy degradation) — out of scope.

residual connection



