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What will we know to do?

* Hopefully by the end of the course:
* https://teachablemachine.withgoogle.com/



https://teachablemachine.withgoogle.com/

What is a neural network

* Artificial neural networks (ANN / NN) are computing systems vaguely
inspired by the biological neural networks that constitute animal brains. Such

systems "learn" to perform tasks by considering examples, generally without
being programmed with task-specific rules.

— [Wikipedia]
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What a neural network can do?

* Image based:
— Object recognition
— Human pose detection
— 3D reconstruction from a signal image
— Image captioning
— Style transfer
* Non image based:
— Language translation
— Game playing
 And much-much more...



Object recognition

Classification Object Detection Semantic Segmentation




Object recognition
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Human pose detection
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3D reconstruction from a single image




Image captioning

a little &rl sitting on a bench holding an a herd of eeE grazmg ona lush gen
umbrella. hillside. —_— —_—

meat and a zebra standing next to a zebra ina du't a stainless steel oven in a kitchen with wood

field. cabinets.

a yellow plate topped with
broccoli.

: : . 3 i
: a man riding a bike down a road next to a

two b1rds sutmg on top of a tree branch. an elephant standing next to rock wall. R & N ooy e,
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Style transfer
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Object recognition challenges

* As we’ve seen before- object recognition is hard!

Classification Object Detection Semantic Segmentation

3




Challenge: variable viewpoint




Challenge: variable illumination

image credit: J. Koenderink
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Challenge: occlusion




Challenge: background clutter
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Challenge: intra-class variations

Svetlana Lazebnik



Object recognition challenges

 We've already seen that this is a hard problem to tackle with “classic” CV
algorithms like SIFT and template matching.

— Template matching does a relatively good job to find the same template instance
In an image.

— SIFT can extend this to find the instance with changing
viewpoint/scale/illumination and rotation.

 What happens when want to find similar object that are not the same?
— NN for the win!
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perceptron
* The basic building block of all NN.

* Firstintroduced in 1958 at Cornell Aeronautical Laboratory by Frank
Rosenblatt.

e We will talk more about it in a moment...

out(t)

in(t) <




MNIST + LeNet-5

 MNIST is a large dataset of handwritten digits used in training of LeNet-5.

e LeNet-5 is the first known NN to solve a major computer vision problem:
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— Classifies digits, was applied by several banks to recognize hand-written numbers
on checks.

— Used 7 trainable layers with a total of 60K params (sounds a lot?).
— Yann LeCun at el., 1998, 23000 citations.
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IMAGENET Large Scale Visual Recognition Challenge (ILSVRC)

* ImageNet is an image database most known for its ILSVRC challenge, and
specifically for the image classification contest:

— 1000 object classes
— 1,431,167 images

— Winner has the minimum mean labeling error out of 5 gausses for a given
unknown test set.
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ILSVRC winners

28.2

First CNN-based winner

152 layers
A \

\ 16.4

\ 11.7
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Human

error: 5%
_______ 3 - - - 1

8 layers 8 layers

B o

ILSVRC'15 ILSVRC'14  ILSVRC'14 ILSVRC'13 | ILSVRC'12 | ILSVRC'11 ILSVRC'10
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Perceptron

* the perceptron is an algorithm
for supervised learning of binary
classifiers.

— The perceptron determines a
hyperplane separator which is

i

determined by a set of weights (/). o

— A feature vector is the representation of
the object to be classified which the
perceptron receives as input (x).

 The weights (W) determine the
separator are what we need to learn in
order to optimize the classification.




hyperplane

 Paramtrization of a line in 2D:
ax +by+c=0
—ifc = 0:
ax +by=0e(a,b) (x,y)=0e (a,b) L (x,y)

* (a, b) defines the normal to the line

(a,b)



hyperplane

Paramtrization of a line in 2D:
ax +by+c=0
—if c = 0
ax+by=0(a,b)-(x,y) =0 (a,b) L (x,y)
* (a, b) defines the normal to the line
—if c # O:
 This is the bias factor.
* Defines the distance of (0,0) from the line:

(a,b)

lax+by+c|

va?+b?

— Point-line distance: d =

|c]

vVa?+b?

— bias =



hyperplane

* This is the same for 3D representation of a plane as well:
ax +by+cz+d=0

" (a, b, c) defines the normal to the plane, d defines the bias of the plane from
(0,0,0).

 And the same representation can be done for ND space. The ND plane is
called a hyperplane.

A hyperplanein R?isaline A hyperplane in R3 is a plane




hyperplane

* Writing the hyperplane representation vector vise will result the equation
below:

X1

wy ~w,]| i |+b=wlix+b=0
_xn_

* Points x above the hyperplane (in the direction of the normal) will result in
wlx + b > 0, and points x below the hyperplane will resultinw’x + b < 0.



hyperplane

* Another option is to write the hyperplane representation with homogenous
vectors, this will result with the (more compact) equation below:

X
lwy ---w,, b] “=wTx =0

xn
1)

* Points x above the hyperplane (in the direction of the normal) will result in
wlx > 0, and points x below the hyperplane will result in wx < 0.



Activation function

* A non-linear function f () that appends the perceptron’s hyperplane equation

y = f(Wx).

* If we have a problem of classifying two groups with a single hyperplane, we
can use a step activation function:

0, x<O0

f(x) = step(x) = {1 >0

A hyperplanein R?isaline A hyperplane in R-” isa plane




perceptron: Inspiration from Biology
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A cartoon drawing of a biological neuron (left) and its mathematical model (right).

Neural nets/perceptrons are loosely inspired by biology.
But they certainly are not a proper model of how the brain works, or even

how neurons work.



Images as inputs

* Inimages, the pixels can be the input feature vector.

Stretch pixels into column

56

il

231

24

i

Input image




Images as inputs

 We want to find a hyperplane in 4D space that puts all cats’ vectors in one
side of it, and all other images in the other side.

Stretch pixels into column

56
\g“‘??’hﬁa-l"l 02 | -05 | 01 | 2.0 1.1 -96.8 | Cat score
ﬂv’jm«-\?* 231
- X5 -+ —
WA 24
Input image 2




CIFAR10 dataset

* CIFAR10 (Canadian Institute For Advanced Research) is a known dataset of 10
classes of small images.
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What is the best separator for such data?
* Assume the pixels values are [0,255] -> [-127,128]
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What is the best separator for such data?

* We can try and take the mean image per class.
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Perceptron: template matching interpretation

* We can think about the optimized weights as an image sized template in zero
mean cross correlation (ZMCC) algorithm.

— We get a strong positive response when the template matches the image area.

minima

maximum



Perceptron: template matching interpretation

* |In our case the template is
the size of the image.

* We can see examples of
templates for different
groups- the optimized
template can bee thought of
as the mean of the class.

car classifier

airplane classiﬂe/ .{_

]
<k

deer classifier




Perceptron: template matching interpretation

Input image

K
02 | 05 15 | 1.3 0 | 25
W
01 | 20 21 | 0.0 02 | -0.3
B B K
b 1.1 3.2 1.2
+ v v
Score | 968 437.9 61.95

plane car bird cat deer dog frog horse ship truck
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Hyperplanes and image classification

 We want to find a hyperplane in 4D space that puts all cats’ vectors in one

side of it, and all other images in the other side.

e Let’s assume there are 2 more classes. In total: cats, dogs and ships. Now, W
is @ matrix rather than a vector

— Find 3 separating planes, one for each class.

Stretch pixels into column

1.1

3.2

-1.2

56
"‘%_._'23' ' 0.2 -0.5 0.1 2.0
mlb 7230w 231
p «£iB 1.5 1.3 2.1 0.0
.24 <$ 2 24
. 0 0.25 | 0.2 -0.3
Input image 2

-96.8

437.9

61.95

Cat score

Dog score

Ship score



Dense layer

* This is the first NN layer we encounter- all inputs are going through multiple
perceptrons at the same time.

* This layer is called dense layer or fully-connected layer.




Dense layer

 Sometimes you can see W and b concatenated like this:

02 [-05]| 0.1 | 20 56

15|13 | 21| 00 231
0 |025| 02 |-03 24
14 2

L

1.1

=8 3.2

02 |-05| 01|20 1.1 56

15 | 13| 21| 00 | 3.2 231
0 025 0.2 | -0.3 | -1.2 24
%% b 2

new

single W
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* Try to solve classification of RAVIA 1 with 2 layers perceptrons and step
activation.

* Interpretation of feature transformation + usage of other activations.




Hyperplane classification is not enough

* Not all datasets can be linearly separable.
* Try classify 8 as the positive +1 class using a perceptron.




Hyperplane classification is not enough

* multi-layer perceptron (MLP), or in a more common name- neural network, is
a better approach to try to handle this data.

0OX+1Y+0=>0



Feature transformation

* We can build “new” features from the data and the classify it!

* Another example without perceptrons:

Class 1:
First and third quadrants

Class 2:
Second and fourth quadrants

Class 1:
1 <=L2norm <=2

Class 2:
Everything else

Class 1:
Three modes

Class 2:
Everything else

q

F1




Hyperplane classification is not enough

* We can build a transformation function from our feature data [x, y] to a new

linearly separable dataset:

T(x,y]) =[xy, x* + y?]

* Now we can separate the dataset with the plane Z = R? = 4 for example.

|

[

i *

Tl

60|

40

4]-)

30




Feature transformation

* By using multiple layers with varying number of neurons in each we can try
and transform any input data to some space where it can be linearly

separable.
 https://www.youtube.com/watch?v=Uf3wnBNXV4k



https://www.youtube.com/watch?v=Uf3wnBNXV4k

Activation functions

e Here are some more activation functions.
 The most used is the rectified linear unit (ReLU) function:

0, x<O0 /
f(x) _ maX(xl O) _ {x, x > 0

* Other known activation functions: sigmoid, tanh, leaky ReLU.

S|gmo|d | / Leaky RelLU )
o(z) = L ; max(0.1z, x)
1+e—7

tanh |
tanh(x) _)[_




Multi-layer NN

 What happens if we remove the non-linear activation?
f =W, max(0, W;x)



Multi-layer NN

 What happens if we remove the non-linear activation?

f = W, max(0, Wyx) » WoW,x = Wx
 We've gotten a linear separator again... not good.
* Remember the activation function!



Multi-layer NN

e 2-layer NN example: Learned 100 different templates in the first layer and
input them into a second layer for final classification.

(Before) Linear score function: f = Wa
(Now) 2-layer Neural Network ~ f = W3 max(0, Wiz)

X| Wy |h| Wy |s

/3072 100 10 \

10D results for
final classification

3072D input
vector

W1 WQ
(100 x [3072+1] matrix) h (10 x [100+1] matrix)
_—— 100D

Don’t forget intermediate
the bias! vector



Multi-layer NN

e Total number of weights to learn:
[3,072+1] x 100 + [100+1] x 10 = 308,310

(Before) Linear score function: f = Wz
(Now) 2-layer Neural Network  f = W5 max(0, Wiz)




Neural network architecture

 Computation graph for a 2-layer neural network.
— Only count layers with tunable weights (so don’t count the input layer).
— Each layer is built from perceptrons: weights + bias + activation function.

output layer
input layer
hidden layer

One Neuron/ perceptron



Neural network architecture

* Deep networks typically have many layers and potentially millions of

parameters.

* Fully connected layer is a layer in which all inputs are multiplied for each
perceptron with different weights. (this is what we saw until now).

output layer
input layer
hidden layer

“2-layer Neural Net”\

“1-hidden-layer Neural Net”

J;
&

g

e
A
W

74 I
o)
\ ‘ ‘ output layer

hidden layer 1 hidden layer 2

X
1

input layer

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers



Neural network architecture

 Example of a deep NN: Inception network (GooglLeNet, Szegedy et al, 2015)
e 22 layers
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Optimizing the weights
* We have this results for each possible label.
* which is the best result currently? Which should be the best result?

Stretch pixels into column

56
wqi;;i”" 02 | -05| 01 | 2.0 1.1 -96.8 | Cat score
B oa 15 | 13 | 21 | 0.0 4| 3.2 | = | 437.9 | Dog score
24 52
g W/ 24
— 0 (025| 0.2 | -0.3 -1.2 61.95 | Ship score
Input image 2




Optimizing the weights- first try
* We have this results for each possible label.

* which is the best result currently? Which should be the best result?
— Let’s use our step activation function from before.

-96.8 | Cat score ! 0

61.95 | Ship score 1

* Can’t tell us which class is better... not good enough.
— We need a way to quantify the results as more/less likely.



Softmax layer
* The softmax layer normalizes all the results so that you get a percentage of
correctness for each label and in use with the classification problem.

* The softmax is usually added as the last layer in a NN to normalize the results
instead of an activation function.

s = f(zi; W) ’P(Y = k| X = 2;) = <& Sofimax

| y .
J Y €9 ‘ Function

Probabilities "Probabilities
must be >=0 must sum to 1
cat : 24.5 0.13
exp normalize
car 51 —164.0|——| 0.87
frog -1.7 0.18 0.00
Unnormalized unnormalized probabilities

log-probabilities / logits probabilities



Cross entropy loss function

* Only during training time, we need to define an error of the given
probabilities and the correct (wanted) probabilities.

A known loss function for the classification problem is called cross entropy

loss.
5= fl@iW)| [PV =KX==)= % sma

Probabilities Probabilities

must be >=0 must sum to 1
cat 3.2 24.5 0.13 [ compare <— 41,00

exp normalize

car 5.1 —|164.0|———| 0.87 0.00
Unnormalized unnormalized probabilities Correct
log-probabilities / logits probabilities probs



Cross entropy loss + softmax

* Cross entropy is a way to measure “distance” between the wanted
distribution of results p and given distribution of results g:

— Y p(j) logq(;

j€label s

{p(]) = 1if j = y; (right label)
p(J) =0V j#y

L; = —logq(yi)

~

plug in with softmax classifier

e




Total loss

This L; is the loss of a single given input image Xx;.
Let’s say we have all possible images in the world, so the total loss will be:

1 ~—N
L =—Z L,
AT

— A mean of all possible losses, where N is number of images.
We want to find the best W that minimizes L.
How do we do this?



Total loss

This L; is the loss of a single given input image Xx;.
Let’s say we have all possible images in the world, so the total loss will be:

1 ~—N
L =—Z L,
AT

— A mean of all possible losses, where N is number of images.
We want to find the best W that minimizes L.

How do we do this?

— Derive over W: Vy, L



contents

The classification problem- again
NN history

Perceptron

— Hyperplanes

— Activation

Dense layer

Multi-layer perceptron (MLP)
Optimization

— Softmax + cross entropy + loss
— Gradient descent

Basic data preprocessing

— Data normalization

— Train, validation and test splits



Finding the best W

* How do we do this?
— Derive over W: Vy, L

* Problems:
— We don’t have all images, and even if we do, it will take forever...
— No one said L is a convex function.

— It's sometimes hard to compute the analytic derivative of the function L in order
to naively find all extremum points.

* An approximate solution to find best W is called mini-batch gradient descent.



Finding the best W

* How do we do this?
— Derive over W: Vy, L

* Problems:
— We don’t have all images, and even if we do, it will take forever...
— No one said L is a convex function.

— It's sometimes hard to compute the analytic derivative of the function L for all
possible x in order to naively find all extremum points.

* An approximate solution to find best W is called mini-batch gradient descent.



Mini-batch

* In mini-batch gradient descent we take only a small subset of images and
compute their average loss:

1 N
— L;
— A mean of the subset losses, where N is the size of images subset.
* This approximation of the loss function is faster to compute but less

accurate.

]l



Finding the best W

* How do we do this?
— Derive over W: Vy, L

* Problems:
— We don’t have all images, and even if we do, it will take forever...
— No one said L is a convex function.

— It’s sometimes hard to compute the analytic derivative of the function L in
order to naively find all extremum points.

* An approximate solution to find best W is called mini-batch gradient descent.



What is a gradient?

e describes the direction and magnitude of the fastest increase around a point
X.
 Example: gradient of a function of 2 variables:

of(x) _ {c’r’f(w) | 5f(w)]
ox ox oy




Gradient descent

* An iterative algorithm for finding local
minima of functions.

e starts at a random point and moves step-
by-step in the direction and proportional
magnitude of the negative of the gradient ¥
of the point he is currently in: i

Lpt+1 = Ly — 1N vf(wn)

— “proportional magnitude” == step size 1.

* |In “proper use” this algorithm converges
to a local minimum which is depended on
the starting point.




Gradient descent- step size

* Also known as learning rate.

* This is known as a hyperparameter: an unknown variable that is configured
by the user (unlike the weights W which the system “learns”).

* The learning rate can change over time- after several steps you can make the
step size smaller for finer results (this is known as learning rate decay).

1(6)

Too low

1(0)

Just right

1(8)

Too high

A small learning rate
requires many updates
before reaching the
minimum point

The optimal learning
rate swiftly reaches the
minimum point

Too large of a learning rate
causes drastic updates
which lead to divergent
behaviors



Examples of learning rates

loss

low learning rate

high learning rate

good learning rate

'
epoch

Figure: Andrej Karpathy



Gradient descent- local minima

* An iterative algorithm for finding local minima of functions.

 we can initiate this procedure several times from several random staring
points and take the minimum of all output minimum points- this way we can
get a better result.



Mini-batch gradient descent

* Combining the two methods is called Mini-batch gradient descent.

* Almost always mis-called stochastic gradient descent (SGD)...
— This is the name only if the batch size is 1.

A A

W

Ny

Gradient Descent Stochastic Gradient Descent



Loss noise

Typical training loss:
Why is it varying so rapidly?
The width of the curve is related

to the batchsize — it too noisy,
increase the batch size

Possibly too linear 5 5 5 i
(learning rate too small)

Figure: Andrej Karpathy
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Data normalization

Assuming 2D input data with different scales (x; € [0,1], x, € [0,1000])

The weights needed to make x; significant as x, are much larger and hence
make the loss function ellipsoid in one direction.

This will cause the gradient descent method to converge in more steps than if
the two axis where at the same scale.

\_/
X

=

Gradient of larger parameter Both parameters can be
dominates the update updated in equal proportions



Data normalization

In order to overcome this, we shall normalize the data before the entrance to
the NN:

m m
_1 2 _ 1 z 2
p=on ) X0t = ) ()
i=0 1=0
~ X H
Xi = 0_2

This should be done for each dimension of the input vector independently.

The test data should be normalized with the same variables found in the train
data.

This is a common practice to do even if the data are at the same scale for all
dimensions since the default hyperparameters for all NN are based on such
normalized data.



Testing the results

NN frameworks are build on learning from examples, so the data is important.

Usually, we split the data to 3 different datasets:
— Train: to train the weights.
— Validation: test the resulted NN with specific architecture on unseen data.

— Test: compare different types of NN architectures/ change in hyperparameters
which are not learned.

If we don’t have a validation dataset, we will eventually change the

architecture/ hyperparameters so they will fit the test data- basically learning

on the unseen dataset- not good.

train validation test




* Fully connected colab
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