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What is a feature?

 There is no universal or exact definition of what constitutes a feature, and the
exact definition often depends on the problem or the type of application.
Given that, a feature is defined as an "interesting" part of an image.

— [from: Wikipedia]



What can we do with features?

Panorama stitching



Local features: main components

1. Detection: Identify the interest
points (also called keypoints).

2. Description: Extract vector feature
descriptor surrounding each interest
point.

3. Matching: Determine
correspondence between descriptors
In two views.




Properties of SIFT

SIFT: scale invariant feature transform.

Extraordinarily robust matching technique for local keypoint detection
description and matching.

Can handle changes in viewpoint: 3D change of POV, scale, rotation and
translation.

— Up to about 60 degree out of plane rotation.
Can handle significant changes in illumination.
— Sometimes even day vs. night.

Fast and efficient—can run in real time.



SIFT example
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keypoints

* Keypoints should be a unique point of the image where all close neighbors
are very different from.

* First attempt: lets take a blob in the image which has a very different
surrounding, and this will be our keypoint.
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Blob detection

* Essentially cross correlation- we are convolving a signal with a template of a
LoG (Laplacian of Gaussian) to get the highest response when the template
matches the signal.
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Blob detection

minima

maximum

* Find maxima and minima of LoG operator in space and scale



Blob detection
LoG(z,y;0) = A(x,y)G(ﬂ%% o) =
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* Highest response occurs when the signal is exactly the width of the negative
part of the LoG => search for all {(x, y)}; where the LoG is exactly zero (the

boarder between negative and positive => the result is a circle: \/xz + y? =

r =+2o.

circle

image Laplacian—



Blob detection

Laplacian filter
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Normalized LoG — optimal scale

local maximum

-

Optimal scale




Blob detection- normalized LoG

* An example of max responses:









As seen in class- edges: DoG

e Can also use difference of Gaussians (DoG) to mimic LoG.

 Why do we want to do this? Faster computationally (explained here:
https://dsp.stackexchange.com/a/37675 )
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https://dsp.stackexchange.com/a/37675

Scale
(first
octave)

Blob detection algorithm

* Build DoG images.
* Search across different image scales for the optimal scale.
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Reminder: Gaussian pyramid

Level 4
Blur and % 1/16 resolution
subsample | & Level 3
Blur and 1/8 resolution

Level 2
1/4 resolution

subsample .

Blur and
subsample

i

= Level 1
X

Blur and 1/2 resolution

subsample

Level O
Original
image



Multi-octave LoG blob detector

e Since the images is low-passed filter so much, we can
decimate the image and not loose data in the process,
which makes the blob search faster!

* We can build a Gaussian pyramid (as taught in image
processing recap class) and run the entire algorithm on
the different octave scales.

P Difference of
Gaussian Gaussian (DOG)




Blob detection: summary

* Advantages:

— Invariant to translation, rotation, scale and intensity shift I — I 4+ b (because we
use only the derivatives: (VG) * I = V(G = 1) = G = (V])).

— Saves a corresponding scale of the feature.
* Disadvantages:
— Can also match edges, not just corners.
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keypoints

* Keypoints should be a unique point of the image where all close neighbors

are very different from.
e Attempt 2: lets find corners in edge image- they are unique because their
surrounding are very different.

-~




Harris corner detection
* Consider shifting the window W by (u,v)

e compare each pixel before and after by summing up the
squared differences (SSD).

e this defines an SSD “error” E(u, v):

Eav)= S U@+ uy+v) - ()
(x,y)eW

e We are happy if this error is high for all (u,v) + (0,0)




Local measures of uniqueness

e Suppose we only consider a small window of pixels.
* How does the window change when you shift it?
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Credit: S. Seitz, D. Frolova, D. Simakov




Local measures of uniqueness

e Suppose we only consider a small window of pixels.
* How does the window change when you shift it?
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“flat” region: “edge”: “corner”:
no change in all no change along the edge significant change in all
directions direction directions



Harris corner detection
* Taylor Series expansion of I:
I(z+u, y+v) = I(z, y)+%u+g—£v+higher order terms

* If the motion (u, v) is small, then first order approximation is good
I(z+u,y+v) ~ I(z,y) + Ju+ 9L

a—y’U
e Plug it into the SSD error term:
E(u.v) = >  [Iax+uy+wv)—I(xy)
(x,y)eWw

~ E [ (x,y) + L, u—+ I,v— I(x, ik
(z,y)eWw
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Harris corner detection

FE(u,v) = Z [T.uw + I,v]° A= > I
(x,y)eWw (z,y)eW
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Also called second-moment matrix or
structure tensor.
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Harris corner detection
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Harris corner detection
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Harris corner detection

 Reminder: A real symmetric matrix has an eigendecomposition of:
Av = v
AQ) = QA
A=QAQ™
A 1s real symmetric 1fanLtriXk

A=QAQ" |
A:(61 62)

)\1 0 62111
0 )\2 Gg

— Bonus: eigenvectors are orthonormal because A is real and symmetric.



Harris corner detection

e Let’s look again on the error function (E = 1) with H eigendecomposition:
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is corner detection
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Harris corner detection

* Eigenvalues and eigenvectors of H
e ¢, =direction of largest increase in E emin

e A, =relative increase in direction e;

emax

e ¢, =direction of smallest increase in E

e A, = relative increase in direction e,

1
 Alarger & A1 2 smaller < faster change in E(u,v) in e direction

direction of e,;,44

direction of e,;;n,



Interpreting the eigenvalues

A “good” corner will have a large R = A,,,;;,,, which means big change of E in
both axis.

Getting the eigenvectors and eigenvalues is computationally inefficient.
Instead, use two tricks:

* [[; 4; = det(4)

* )i A =trace(4)
Then we can more easily compute R = 4,,,;,, :

R =det(4) — k = trace(4)* (x € [0.04,0.06])

det(A) _ Allz

e R = —
trace(4) A1+,




Interpreting the eigenvalues




Interpreting the eigenvalues

* A binary threshold of pixels above 4,,,,, and 4,,,;,,




Harris corner detection

Compute gradients of patch around each pixel.
Compute the second-moment matrix.

Compute eigendecomposition of covariance matrix.
Use eigenvalues to find corners.



Harris detector example




Harris corner detector- rotation and translation

P |]|]:> d

* Eigenvalues remains the same on rotation => invariant to rotation!
 The feature is also translation invariant (easy to see).



e Partial invariance to affine intensity change

Harris corner detector- intensity

* Only derivatives are used => invariance to intensity shift [ - I + b

 Not completely invariance to Intensity scale: I — a -1

threshold

R
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X (image coordinate)

X (image coordinate)




The Harris corner detector is not invariant to scale

edge!
corner!
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SIFT keypoint detection

* Find blobs using the improved blob detection (across
different octave scale).

 Use interpolation to find exact peak of keypoint.
* The interpolation takes place in x, y and scale

dimension.

* Eliminate edge response with Harris corner detector
variant (called principal curvature) around temp keypoints
in interpolated space and scale.

* SIFT has the advantages of both previous technics and is invariance to:
rotation, translation, scale, illumination shift and partially to 3D change of
viewpoint since it is a local keypoint detector.
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Template matching- SSD, ZNCC

e Good for very carefully constructed scenarios.
 Can’t handle change in rotation and scale.
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HOG- Histogram of Oriented Gradients
* A dense representation of image as blocks, each with its own histogram of
gradient directions, weighted by the gradient magnitude.
* Originally used to detect humans in images.

e Equations for gradient magnitude and orientation:

m(z,y) = \/(L(x +1,y) — Lz — 1,y)2 + (L(z.y + 1) — L(z.y — 1))2

O(x,y) = tan Y ((L(x.y +1) — L(x,y — 1)) /(L(x +1,y) — L(x — 1,%)))

0 27

angle histogram

Image gradients
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HOG variation as SIFT keypoint descriptor

eFirst, find the main patch direction using a HOG on all gradients around
keypoint at the selected scale, all further calculation is done around this
direction (this is how to get a rotation invariance descriptor).

eTake 16x16 patch around detected feature and calculate gradient
orientation and magnitude to each pixel.

eMagnitude is also weighted by a Gaussian around the keypoint.

eBuild sub-blocks of 4X4 of the patch.

eCreate 8-bin histogram of edge orientations (weighted by Gaussian and
magnitude of gradient) to each sub-block.

eTake the 4X4X8=128 results of histograms and concatenate them to a
single feature vector. Normalize this vector to be invariance to
illumination scale.
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HOG variation as SIFT keypoint descriptor




HOG variation as SIFT keypoint descriptor

* |nvariant to:
— Rotation (due to shifting of the histograms around the main direction).
— Translation (easy to see).
— Scale (build at a specific scale).
— lllumination shift (only derivatives are used).
— lllumination scale (normalize the feature vector).
— 3D change of view (the descriptor is of local keypoints).
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SIFT Feature matching

* Given a feature in |, how to find the best match in I,?
1. Define distance function that compares two descriptors
2. Test all the features in I,, find the one with min distance

e What distance function to use?



SIFT Feature matching

e What distance function to use?

— Simple approach: L, distance, L, = ||f{ — f, || = \/Zi (f1,—f2,)*

— Good overall but can also give small distances for ambiguous (incorrect) matches.




SIFT Feature matching

* Better approach: ratio distance: ||f; — fo. I /Il f1 — f5 || <TH
— f, is best match to f; in I,
— f,” is 2" best matchtof, in |,

— gives larger values for distinct matches.




What haven’t been covered about SIFT

 Computational fast search of descriptors.
* Alot of minor engineering steps (e.g. thresholding of features).

* And more... this algorithm is 28 pages long article (with 52000 citations!!!)
— https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf



https://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
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Panoramas

* We have two images — how do we combine them?




Panoramas

Use SIFT to match descriptors of the two images.

Between the two images there can be an unknown homographic
transformation.

— How do we align the two images?

3
..,




Panoramas

e Find the best homographic projection from I, to I;using RANSAC.

e Finding this homographic projection is the same as finding the camera
calibration matrix that we’ve seen, only with 3X3 matrix.

e RANSAC is used to drop wrongly matched points (outliers). Only 3 points needed
to be chosen at random to find a RANSAC projection.
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