Edge detection

Yoni Chechik

www.AlisMath.com

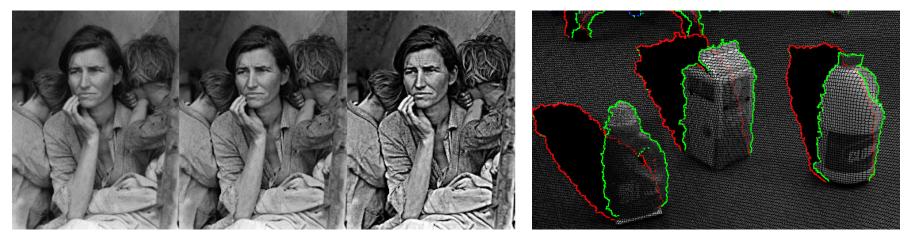
References

- http://szeliski.org/Book/
- <u>http://www.cs.cornell.edu/courses/cs5670/2019sp/lectu</u> <u>res/lectures.html</u>
- http://www.cs.cmu.edu/~16385/

Contents

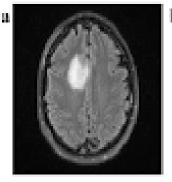
- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

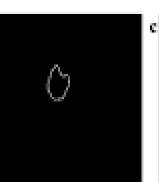
Some motivation



Art (Instagram filters)

Robotics (scene understanding)



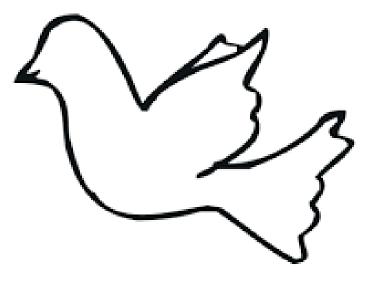


Medicine (tumor detection)

Autonomous vehicles (license plate detection)

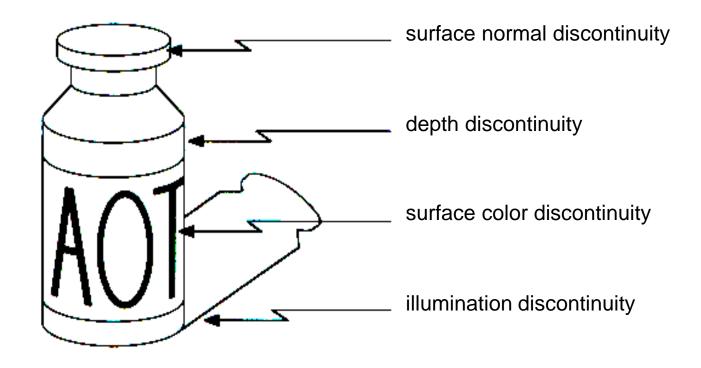
Why edges?

- Representation of objects can be done without full image representation- more compact.
- Edges are salient features (salient- "most noticeable or important").



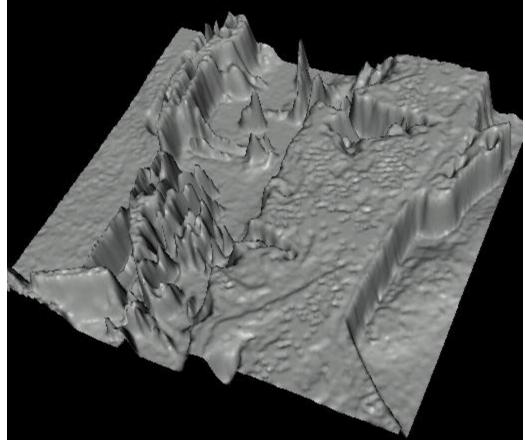
What are edges?

- "The outside limit of an object, area, or surface; a place or part farthest away from the center of something."
- Edges can be caused from many reasons in images:



Representation in images

- Rapid changes in colors.
- Looks like steep edges if represented as a surface:



Contents

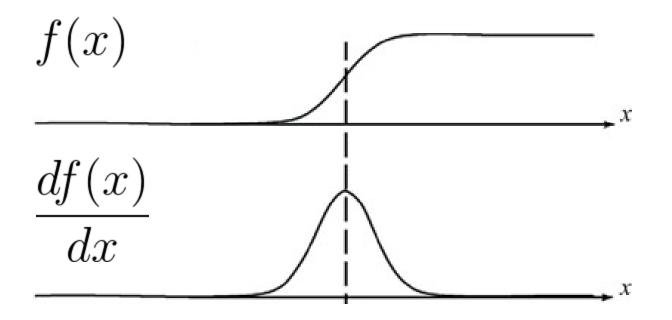
- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

How to find edge image?

- Wanted result: image of a binary mask of where there is an edge.
 - f(x)
- How to do so?

First order derivative

• Derivative of an edge:



 Finding maximum points in the derivative of an image is a possible way to find edges!

Deriving the derivative

• Definition of derivative in continues functions:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Deriving the derivative

• Definition of derivative in continues functions:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• In discrete space we can set h = 1:

$$f'[x] = f[x+1] - f[x]$$

Deriving the derivative

• Definition of derivative in continues functions:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• In discrete space we can set h = 1:

$$f'[x] = f[x+1] - f[x]$$

• And in 2D space (derivative along x axis):

$$f'_{x}[x, y] = f[x + 1, y] - f[x, y]$$

1st derivative filter

$$f'_{x}[x, y] = f[x+1, y] - f[x, y]$$

• We can mimic this derivative as a convolution operator:

$$f'_x = f \ast \boxed{+1} \ -1$$

- Note 1: when a kernel size is even in some dimension, the center of the kernel needs to be specified (above the center is -1).
- Note 2: remember that in the convolution operation the kernel is flipped in both directions.

Symmetric 1st derivative

 A more common approach is using the symmetric 1st derivative:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

How it's written in a discrete form?

Symmetric 1st derivative

 A more common approach is using the symmetric 1st derivative:

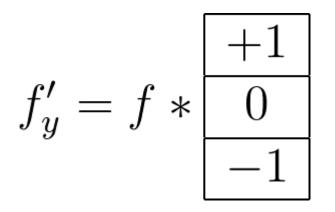
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x-h)}{2h}$$

• Which translates to this kernel:

$$f'_x = f * \frac{1}{2} + 1 \quad 0 \quad -1$$

• We'll use the kernel above without the $\frac{1}{2}$ constant, since we only care about the ratio between gradients.

Y direction



- The convolution kernel above is true for python/matlab/opencv image axis convention, where the positive y direction is down.
 - Let's use this convention in the below derivation.

Image gradient

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid increase in intensity: Г

$$\nabla f = [+, 0]$$

$$\nabla f = [+, -]$$

$$\nabla f = [0, +]$$

 $\nabla \mathcal{L}$

Т

Image gradient

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid increase in intensity:

$$\nabla f = [+, 0]$$

$$\nabla f = [+, -]$$

$$\nabla f = [+, -]$$

ы

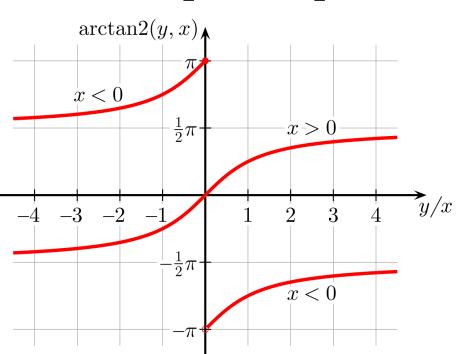
• The edge **strength** is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

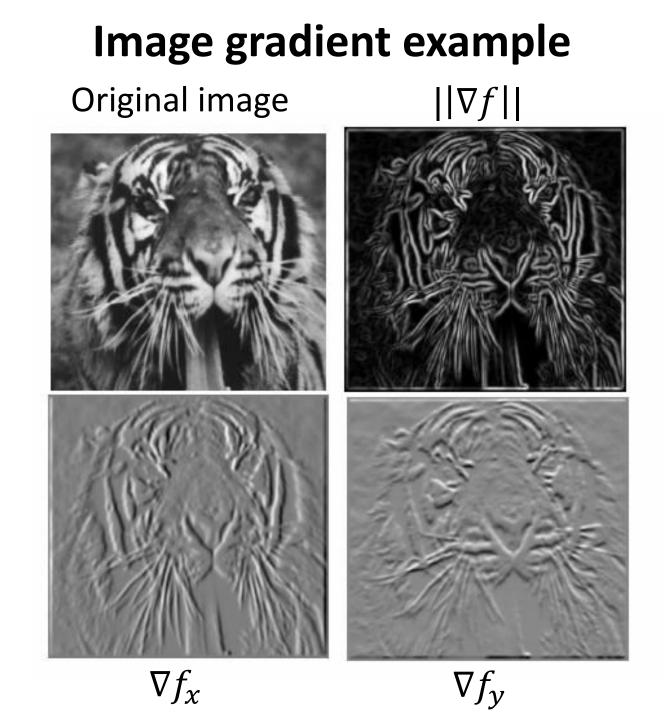
Gradient direction

- The gradient direction is given by: $\theta = atan2(-f_y',f_x')$
 - $\theta \in (-\pi, \pi]$
 - $-f'_y$ because of the inversed y direction.
 - unlike regular $\tilde{\theta} = \arctan(\frac{y}{x})$ in which $-\frac{\pi}{2} < \tilde{\theta} < \frac{\pi}{2}$

$$\operatorname{atan2}(y, x) = \begin{cases} \arctan(\frac{y}{x}) & \text{if } x > 0, \\ \arctan(\frac{y}{x}) + \pi & \text{if } x < 0 \text{ and } y \ge 0, \\ \arctan(\frac{y}{x}) - \pi & \text{if } x < 0 \text{ and } y < 0, \\ +\frac{\pi}{2} & \text{if } x = 0 \text{ and } y > 0, \\ -\frac{\pi}{2} & \text{if } x = 0 \text{ and } y < 0, \\ \operatorname{undefined} & \text{if } x = 0 \text{ and } y = 0. \end{cases}$$

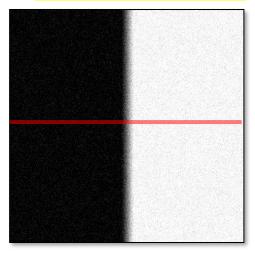


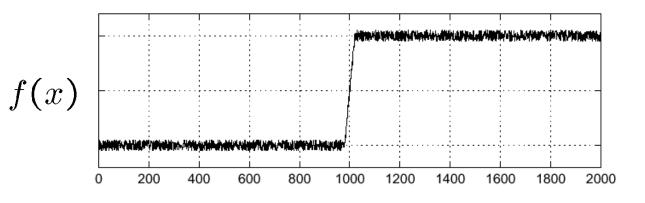
 $\int_{\theta} \nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$



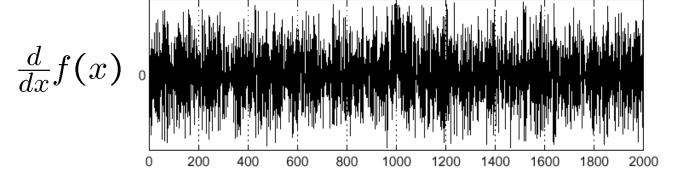
Noise effects

 How to find maximum of derivative in noisy environment?

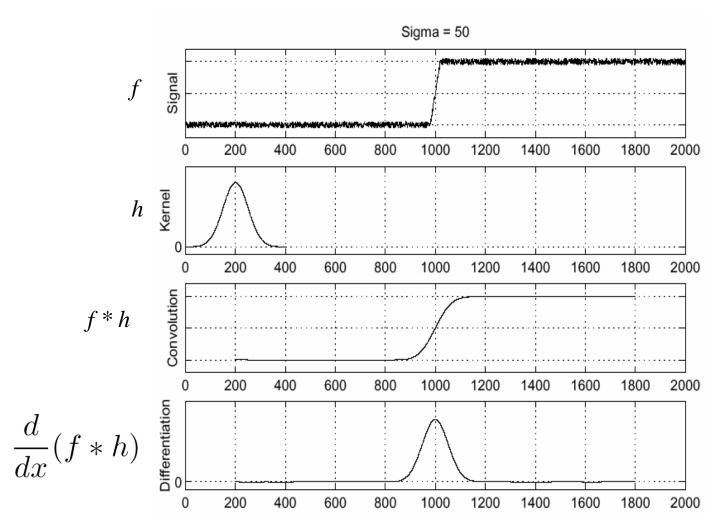




Noisy input image



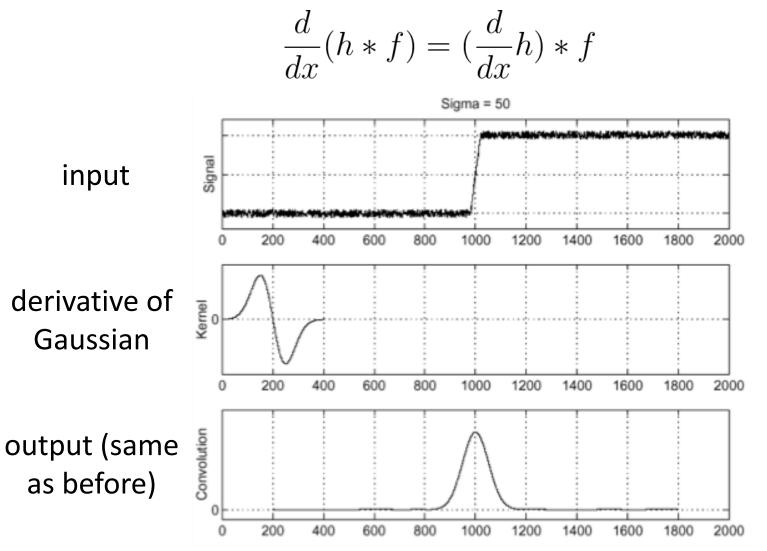
Solution 1: smoothing the noise



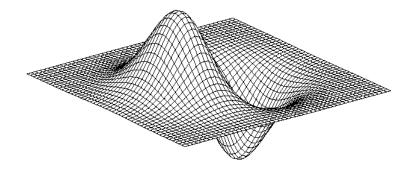
• Search for the maximum in the smooth image!

Gaussian derivative kernel

• Using this convolution trick:



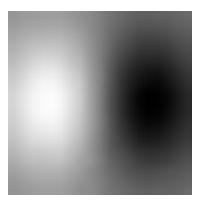
Gaussian derivative kernel 2D

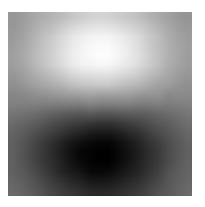


Derivative of Gaussian

x-direction

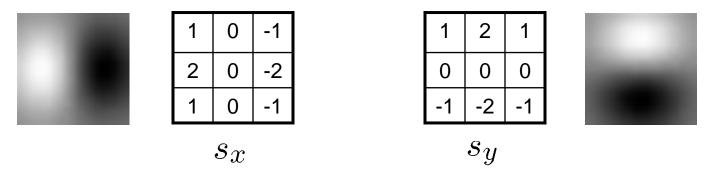
y-direction





Sobel filter

• Common approximation of derivative of Gaussian



• Can also be thought of as a kernel with higher weighting for closer neighbors.

Solution 2: Prewitt filter

$$f'_x = f * \begin{vmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{vmatrix}$$

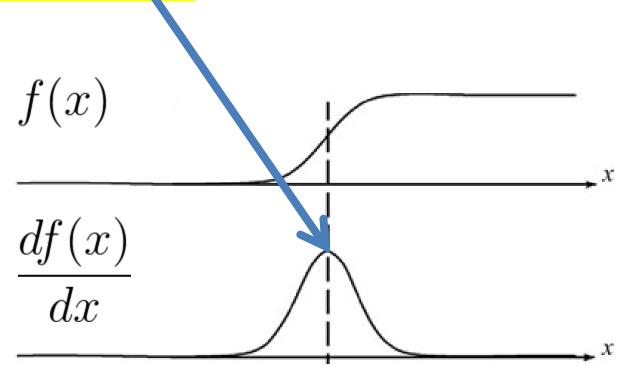
- Like Sobel but with different weighting for the neighbors.
- In practice- Non definitive superiority between Sobel and Prewitt.

Contents

- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

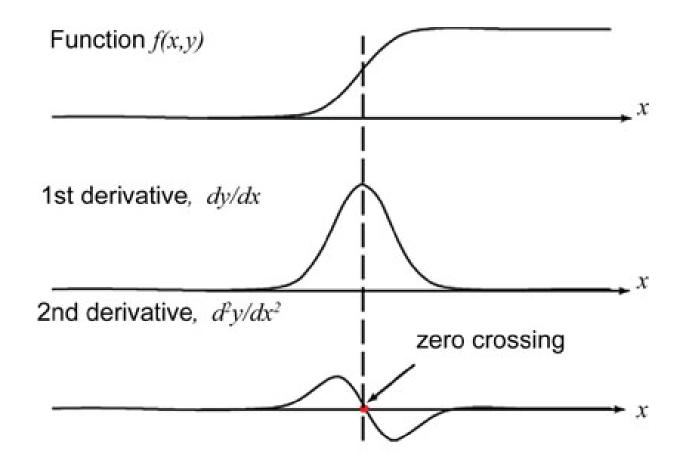
Edge thinning

- I have the edge filter result, but I want only one pixel to represent the edge in a binary mask.
- How do I find this?



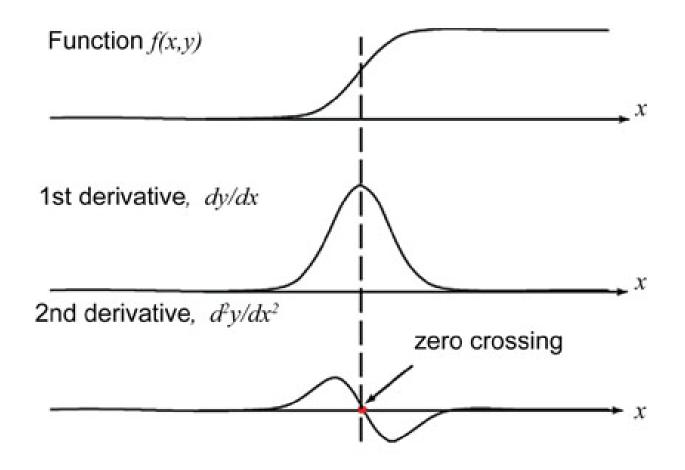
Naïve approach: 2nd derivative

- Let's try to find the zero crossing of the 2nd derivative.
- Only single zero crossing- should produce thinner edge



Naïve approach: 2nd derivative

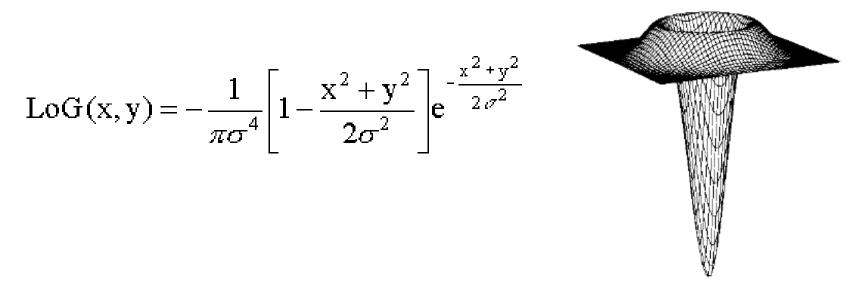
• In practice: this approach is very susceptible to noise!



A better approach: LoG

 Let's take the 2nd derivative of the Gaussian (Laplacian of Gaussian: LoG) kernel so smoothing will help with noise reduction:

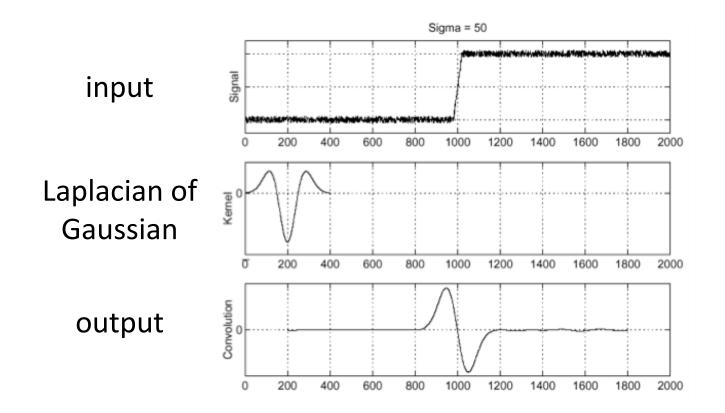
$$\Delta f = \nabla^2 f = \nabla \cdot \nabla f = \nabla \cdot \left[\frac{df}{dx}, \frac{df}{dy}\right] = \frac{d^2 f}{dx^2} + \frac{d^2 f}{dy^2}$$
$$\nabla^2 h_\sigma(u, v)$$



Laplacian of Gaussian

Find edge in noise signal: LoG

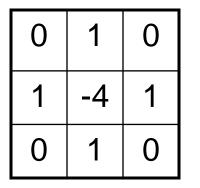
Input is noisy step signal; output is zero crossing at the step.



LoG quantization

• Can be filter of different sizes:

- 3X3:



1	1	1
1	-8	1
1	1	1

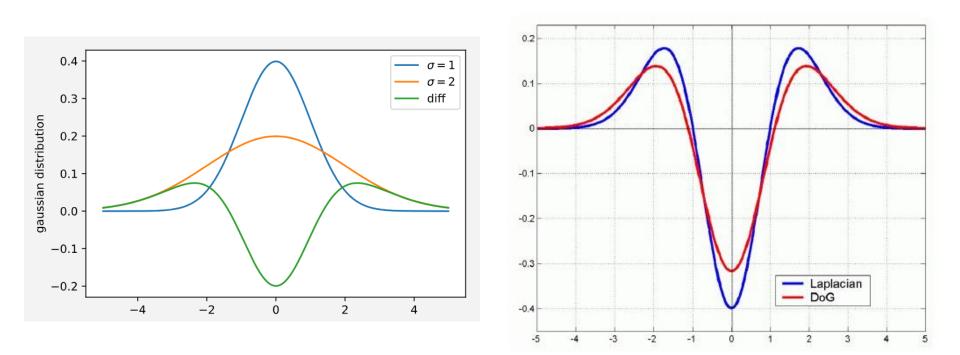
- 9X9:

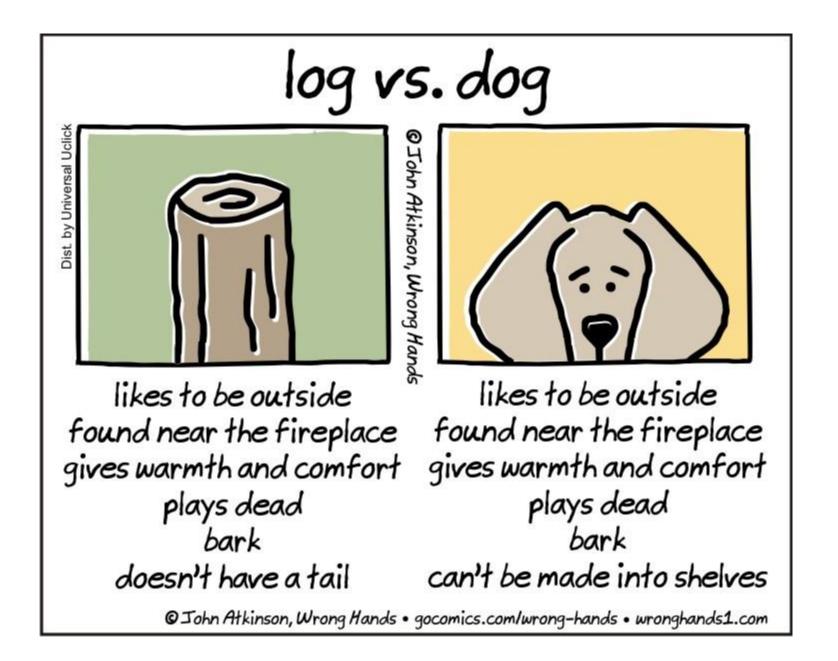
1	(0	0	3	2	2	2	3	0	0)	
	0	2	3	5	5	5	3	2	0	
	3	3	5	3	0	3	5	3	3	
	2	5	3	-12	-23	-12	3	5	2	
	2	5	0	- 23	-40	- 23	0	5	2	
	2	5	3	-12	-23	-12	3	5	2	
	3	3	5	3	0	3	5	3	3	
	0	2	3	5	5	5	3	2	0	
	(o	0	3	2	2	2	3	0	0)	

DoG

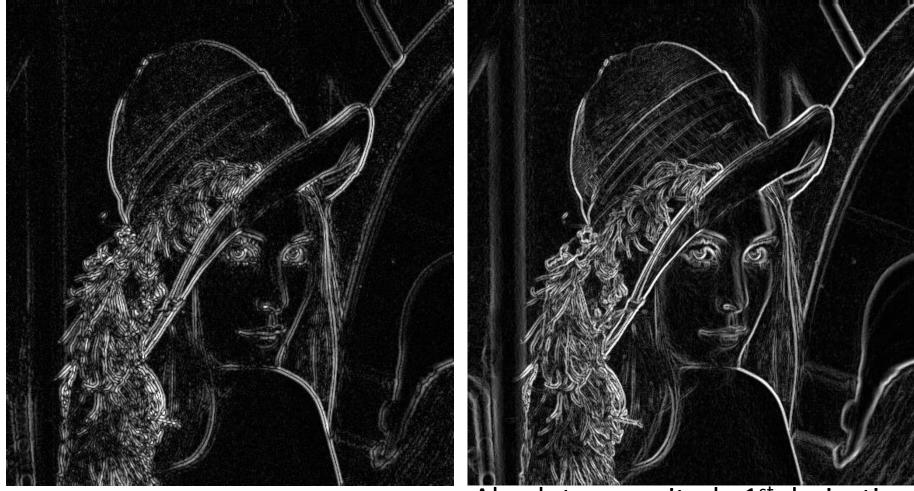
- Can also use difference of Gaussians (DoG) to mimic LoG.
- Why do we want to do this? Faster computationally (explained here:

https://dsp.stackexchange.com/a/37675)





Example: LoG

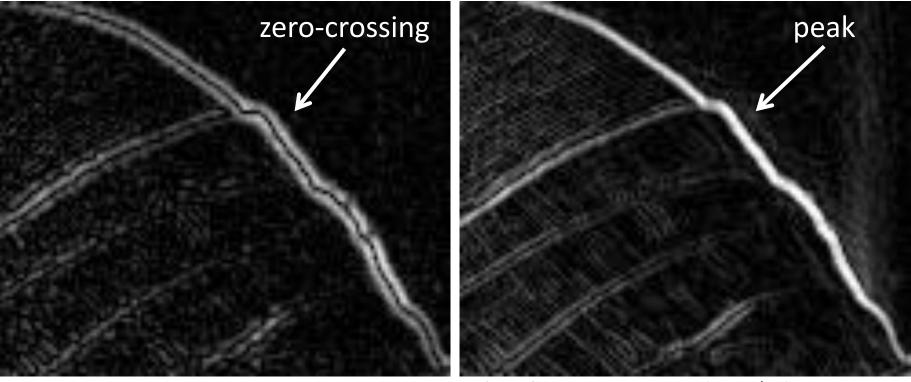


|LoG(x)|

Absolute magnitude 1st derivative gaussian filter

Example: LoG

• Note: both images are after absolute value.



|LoG(x)|

Absolute magnitude 1st derivative gaussian filter

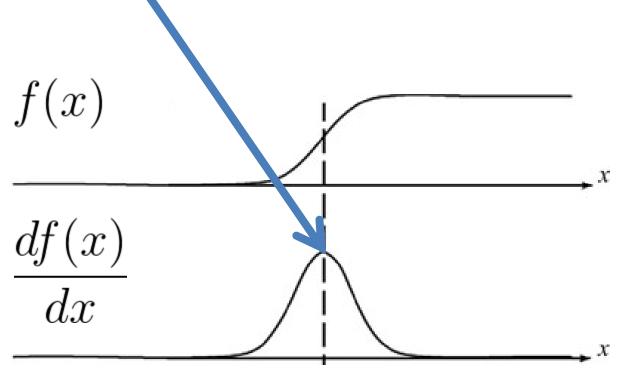
Zero crossing

- The new problem arising from the LoG filter is: how to mark the zero crossings?
- Answer: no easy algorithm to detect zero crossings.
 - E.g.: planes with minor noise will also produce zero crossing artifacts.

- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

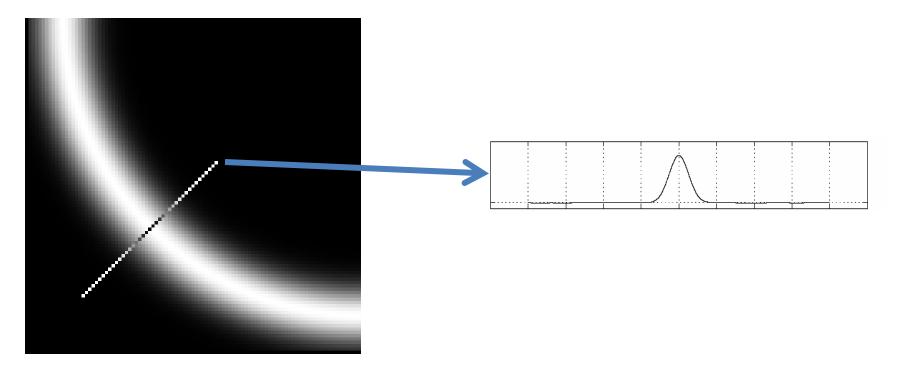
Edge thinning

- I have the edge filter result, but I want only one pixel to represent the edge in a binary mask.
- How do I find this?



Non maximum suppression

- NMS
- Find the gradient magnitude + orientation of each pixel and search on this 1D line for maximum point.



NMS algorithm

get image gradient magnitude + orientation using
1D 3X3 gradient filter (e.g.: Sobel).

for each pixel p_0 :

Quantize $\measuredangle p_0$ to one of four possibilities: $[0^\circ, 45^\circ, 90^\circ, 135^\circ]$.

In 3X3 neighborhood of p_0 , find two neighbors

- in quantized gradient orientation $\{p_1, p_2\}$.
- If $||p_0|| < ||p_1|| \text{ or } ||p_0|| < ||p_2||$: $||p_0|| \leftarrow 0$

NMS results

Before NMS

After NMS

- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

Edge mask

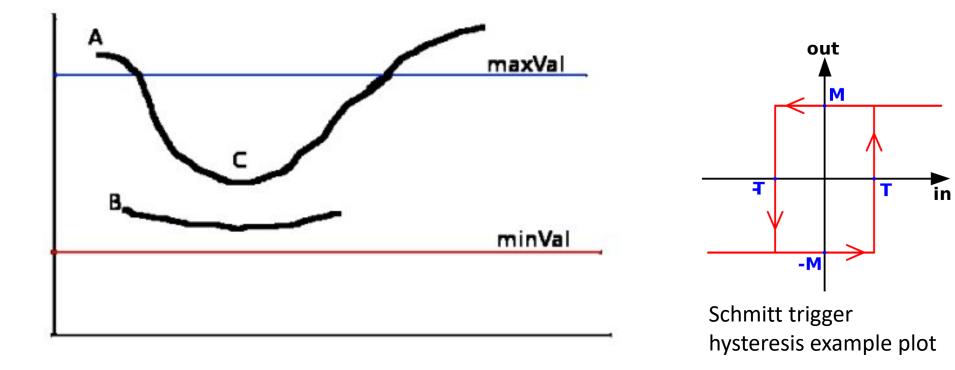
 How do we transform this integer image to a binary mask of where there is/ isn't an edge?

First try: single threshold edge mask

- Mask == binary image.
- Possible 1st solution- thresholding:
 - Choose an TH edge value, above which the pixel mask is 1, 0 otherwise.
 - The value can be a constant or percentile of the maximum edge value exists in the image.
 - Low TH: will get extra edges, but also input noise.
 - High TH: can miss lower valued edge pixels, less noise.
- How can we difference between low value edge pixels and noise?

Hysteresis motivation

- Weak edges are usually neighbors of strong edges, while noise can be at any pixel.
 - Usually "neighbors" means 3X3 square of adjacent pixels.
- If we know that a neighbor of a weak edge is a strong edge, then the weak edge is a strong edge!



hysteresis

```
Choose two thresholds: \{TH_h, TH_l | TH_h > TH_l\}
For each pixel p_i:
   If p_i \geq TH_h:
       p_i \leftarrow 1
   elif TH_l \leq p_i < TH_h:
       p_i \leftarrow weak\_edge\_pixel
   Else: //p_i < TH_l
       p_i \leftarrow 0
While weak_edge_pixels that are neighbors of 1
exists:
    for each weak_edge_pixel_p<sub>i</sub>:
       If weak_edge_pixel_p_i neighbor of 1:
               weak_edge_pixel_p_i \leftarrow 1
All remaining weak_edge_pixels \leftarrow 0
```

- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

Canny edge detector

 Canny edge detector is one of the most known and used CV algorithms, still highly used even today (developed in 1986, cited 33000 times until 2019):

```
Gaussian filter
Find image gradient magnitude and orientation
NMS
Hysteresis
```

Example output

Important note: tradeoffs

🖉 is the

land

CR

tra

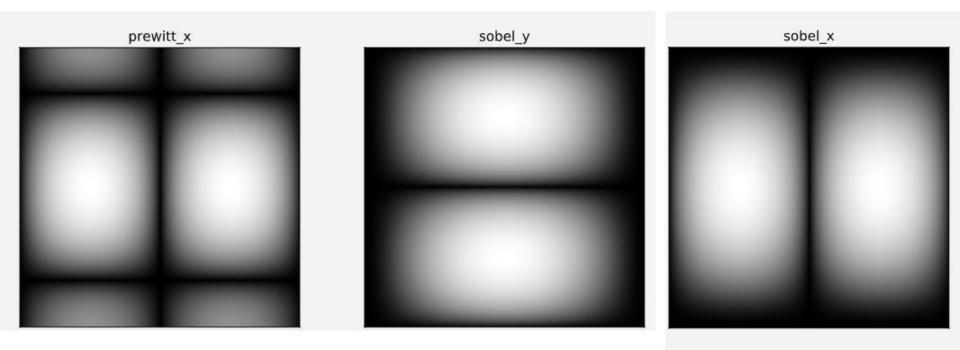
- It's a common <u>misconception</u> in CV to think that one algorithm is <u>always</u> better than another.
- In CV, algorithms are highly dependent in the given environment in which they are executed. Each environment can vary in:
 - Noise.
 - Needed computation efficiency.
 - Overall problem variance.
 - Etc...

- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

HP filter

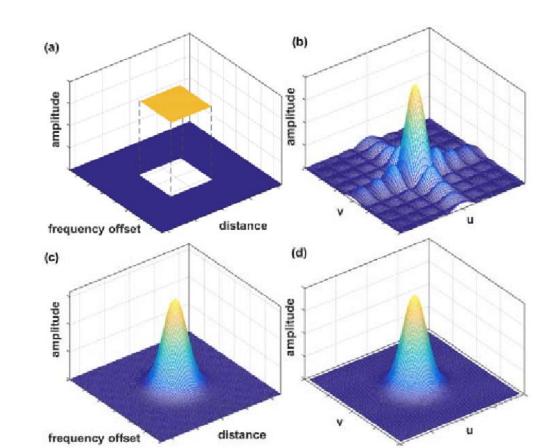
- Higher frequencies represents the edges of images.
- Removing the lower frequencies of an image will result in edge image!

Edge filters- frequency representation



Why prewitt has waves?

- Recalling the mean filter we can say that prewitt is like two side by side rectangles.
- Sobel is like two gaussians side by side!



- Intro to edges
- Basic edge image
- Edge thinning
 - LoG
 - NMS
- Edge mask
- Canny edge detector
- Other edge related topics
 - Frequency representation
 - Unsharp filter

Image sharpening

Obtain the high frequencies magnitude image. Enhance the edges (e.g. by multiplying with a constant>1). Add the enhanced edges back to the original image.

• Or- one liner: $f_{sharpen} = f + \gamma \cdot || \nabla f ||$

Unsharp filter

- The former can also be done with only low pass filtering! $f_{unsharp} = f + \gamma (f h_{blur} * f)$
- This was also the way that photographers enhanced edges before CV (dates to the 1930s). More on this topic here:

https://en.wikipedia.org/wiki/Unsharp_masking#Photogr aphic_darkroom_unsharp_masking

