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Some motivation
-

Art Robotics
(scene understanding)

Medicine Autonomous vehicles
(tumor detection) (license plate detection)



Why edges?
* Representation of objects can be done without full image

representation— more compact.

* Edges are salient features (salient- “most noticeable or
important”).



What are edges?

 “The outside limit of an object, area, or surface; a place
or part farthest away from the center of something.”

* Edges can be caused from many reasons in images:

% surface normal discontinuity

depth discontinuity

surface color discontinuity

-~
/
lumination di finuit
ey A illumination discontinuity




Representation in images

* Rapid changes in colors.
* Looks like steep edges if represented as a surface:
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How to find edge image?

* Wanted result: image of a binary mask of where there is
an edge.

f(x) |

e How to do so?



First order derivative

e Derivative of an edge:

f(z) /
df () '
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* Finding maximum points in the derivative of an image is
a possible way to find edges!



Deriving the derivative

 Definition of derivative in continues functions:

h—0 h



Deriving the derivative

 Definition of derivative in continues functions:

h—0 h

* In discrete space we can set h = 1:

fla] = fle+1] = fla]



Deriving the derivative

 Definition of derivative in continues functions:

h—0 h
* In discrete space we can set h = 1:

fla] = fle+1] = fla]

 And in 2D space (derivative along x axis):

Flrs) = flo + 1) — fle.



15t derivative filter
fulz,yl = fle +1,y] — flz, y]

* We can mimic this derivative as a convolution operator:
/

— Note 1: when a kernel size is even in some dimension, the
center of the kernel needs to be specified (above the
centeris —1).

— Note 2: remember that in the convolution operation the
kernel is flipped in both directions.



Symmetric 1% derivative
A more common approach is using the symmetric 1%
derivative:
, r+h)— f(x—nh
Fa) — fim L) = fa =)
h—0 2h

e How it’s written in a discrete form?




Symmetric 1% derivative

A more common approach is using the symmetric 1%
derivative:
: - fla+h)— flz—h)
r) = lim
f ( ) h—0 2h

e Which translates to this kernel:

1

, 1 .
 We'll use the kernel above without the 5 constant, since
we only care about the ratio between gradients.



Y direction

+1
! —
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* The convolution kernel above is true for

python/matlab/opencv image axis convention, where the
positive y direction is down.

— Let’s use this convention in the below derivation.



Image gradient

* The gradient of animage: V[ = [giﬁ ggjj]

 The gradient points in the direction of most rapid
Increase in intensity:

— Vi = [+ -]



Image gradient

* The gradient of animage: Vf = [g:];’ ggﬂ

 The gradient points in the direction of most rapid
Increase in intensity:
Vf = [+,

I_sz [+, 0] l 0
Vf =[0,+] b

|

* The edge strength is given by the gradient magnitude:

VAl = /(D% + (33



Gradient direction

* The gradient direction is given by:

) = atan2(~ ). f.)

e 0 € (—m, |

. —fy’ because of the inversed y direction.

* unlike regular 6 = arctan(%) in which —% <0<
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Image gradient example
Original image [IVF]]
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Noise effects

* How to find maximum of derivative in noisy
environment?

f(@)

i i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Noisy input image

L f(z)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000



Solution 1: smoothing the noise

Sigma = 50

f*h

d—(f*h)

Kernel

Convolution

Differentiation

2000

Search for the maximum in the smooth image!



Gaussian derivative kernel

* Using this convolution trick:

d d

@(h*f):(@h)*f

Sigma = 50
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Gaussian derivative kernel 2D
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Sobel filter

e Common approximation of derivative of Gaussian

1(0]-1 1121

210]|-2 O]0]|O0

1(0]-1 -1(-21-1
833 Sy

e Can also be thought of as a kernel with higher weighting
for closer neighbors.



Solution 2: Prewitt filter

+1] 0 | —1
! — —
fo=f+[F+1]0 |1
+11 0 | —1
* Like Sobel but with different weighting for the neighbors.

* In practice- Non definitive superiority between Sobel and
Prewitt.
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Edge thinning

* | have the edge filter result, but | want only one pixel to
represent the edge in a binary mask.

e How do | find this?

f(zr) |

4 (2) ,
dx |




Naive approach: 2"d derivative

* Let’s try to find the zero crossing of the 2" derivative.
* Only single zero crossing- should produce thinner edge

Function fix,v) |
X
1st derivative, dv/dx
I
X

2nd derivative, o v/dx’

L

Zero crossing

|




Naive approach: 2"9 derivative

* In practice: this approach is very susceptible to noise!

Function fix,v) |
X
1st derivative, dv/dx
I
X

2nd derivative, o v/dx’

L

Zero crossing

|




A better approach: LoG

* Let’s take the 2"d derivative of the Gaussian (Laplacian of
Gaussian: LoG) kernel so smoothing will help with noise
reduction:

Af =V =V-Vi =V =+

- da?

V2he(u,v)
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Laplacian of Gaussian



Find edge in noise signal: LoG

* |nput is noisy step signal; output is zero crossing at the
step.

Signal

input
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LoG quantization

e Can be filter of different sizes:

1

1

— 3X3:
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— 9X9:



DoG

e Can also use difference of Gaussians (DoG) to mimic LoG.

* Why do we want to do this? Faster computationally
(explained here:
https://dsp.stackexchange.com/a/37675)

2 Q Q

=
N
(=]

0.2
0.4 - —_
Ak
0.3 4 — di
o}
0.2 -
01+

0.1 A

sian distribution

0.0 -

—0.1 -

_02 —



https://dsp.stackexchange.com/a/37675

log vs. dog
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Example: LoG

gaussian filter




Example: LoG

* Note: both images are after absolute value.

Zero-crossing

N

|LoG(x)] Absolute magnitude 1% derivative
gaussian filter



Zero crossing

* The new problem arising from the LoG filter is: how to
mark the zero crossings?

* Answer: no easy algorithm to detect zero crossings.

— E.g.: planes with minor noise will also produce zero
crossing artifacts.
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Edge thinning

* | have the edge filter result, but | want only one pixel to
represent the edge in a binary mask.

e How do I find this?

f(zr) |

4 (2) ,
dx |




Non maximum suppression

* NMS

* Find the gradient magnitude + orientation of each pixel
and search on this 1D line for maximum point.




NMS algorithm

get image gradient magnitude + orientation using
1D 3X3 gradient filter (e.g.: Sobel).
for each pixel pg:
Quantize <xp,to one of four possibilities:
10°,45°,90°,135°].
In 3X3 neighborhood of p,, find two neighbors
in quantized gradient orientation {pq,p,}.

If |Ipol| < |lp1l| o7 |Ipol| < |Ip2l|:
“POH<—()



NMS results

Before NMS After NMS
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Edge mask

* How do we transform this integer image to a binary mask
of where there is/ isn’t an edge?




First try: single threshold edge mask

 Mask == binary image.
* Possible 15t solution- thresholding:

— Choose an TH edge value, above which the pixel mask is 1,
O otherwise.

— The value can be a constant or percentile of the maximum
edge value exists in the image.

— Low TH: will get extra edges, but also input noise.
— High TH: can miss lower valued edge pixels, less noise.

 How can we difference between low value edge pixels
and noise?



Hysteresis motivation

* Weak edges are usually neighbors of strong edges, while
noise can be at any pixel.

— Usually “neighbors” means 3X3 square of adjacent pixels.

* |If we know that a neighbor of a weak edge is a strong
edge, then the weak edge is a strong edge!

out
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-|v|>_

Schmitt trigger
hysteresis example plot




hysteresis

Choose two thresholds: {TH;,TH;|TH, > TH;}
For each pixel p;:
If Di = THh:
pi <1
elif THl < pi < THh:
p; < weak_edge_pixel
Else: //p; < TH,
pi < 0
While weak_edge_pixels that are neighbors of 1
exists:
for each weak_edge_pixel_p;:
If weak_edge_pixel_p; neighbor of 1:
weak_edge_pixel p; < 1
All remaining weak_edge_pixels < 0
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Canny edge detector

 Canny edge detector is one of the most known and used
CV algorithmes, still highly used even today (developed in
1986, cited 33000 times until 2019):

Gaussian filter

Find image gradient magnitude and orientation
NMS

Hysteresis



Example output




Important note: tradeoffs

* |t's a common misconception in CV to think that one
algorithm is always better than another.

* In CV, algorithms are highly dependent in the given
environment in which they are executed. Each
environment can vary in:

— Noise. r - - = =

— Needed computation efficiency. @v ﬁ§ {th
— Overall problem variance. [I
ana OFf |

— Etc... I

@W@@@@{F{F&s |
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HP filter

* Higher frequencies represents the edges of images.

 Removing the lower frequencies of an image will result in
edge image!




Edge filters- frequency representation

prewitt_x




Why prewitt has waves?

* Recalling the mean filter — we can say that prewitt is like
two side by side rectangles.

* Sobelis like two gaussians side by side!
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Image sharpening

Obtain the high frequencies
magnitude image.

Enhance the edges (e.g. by
multiplying with a constant>1).
Add the enhanced edges back to the
original image.

e Or-oneliner:

fsharrpen — f + Y -

VI




Unsharp filter

 The former can also be done with only low pass filtering!

funshm‘p f =+ f}/(f hblu’r * f)

* This was also the way that photographers enhanced

edges before CV (dates to the 1930s). More on this topic
here:

https://en.wikipedia.org/wiki/Unsharp masking#Photogr

aphic darkroom unsharp masking
y



https://en.wikipedia.org/wiki/Unsharp_masking#Photographic_darkroom_unsharp_masking
https://en.wikipedia.org/wiki/Unsharp_masking#Photographic_darkroom_unsharp_masking
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