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Some motivation

Image restoration
Medicine

(MRI denoising)



contents

• Noise and filtering

• Frequency representation

• Decimation

• Interpolation 



Gaussian Noise

• Gaussian noise is an additive noise that can appear in images due to the 
system electrical circuitry.

• This noise is independent of signal strength and independent at each pixel 
(IID- independent and identically distributed). 



Salt & Pepper noise

• Noise that can be caused by analog-to-digital converter errors, bit errors in 
transmission, etc.

• This noise is not additive to the signal strength (a replacement of original 
value with noise value). 

• This noise is independent of signal strength and independent at each pixel. 



And some more noise

• Shot noise - caused by statistical quantum fluctuations, that is, variation in 
the number of photons sensed at a given exposure level in the darker parts of 
an image (where there are just few photons that enter each pixel “bin”). 
Modeled as Poisson noise.

• Quantization noise – caused by quantizing the pixels of a sensed image to 
several discrete levels (analog to digital conversion).



Noise reduction with LTI filters

• LTI (LSI) filters are also known as convolution filters or kernel filters and are a 
known solution for the noise problem.

• They are linear operators, which involve weighted combinations of pixels in 
small neighborhood, The combination is determined by the filter’s kernel.

• The same kernel is shifted to all pixel locations so that all pixels use the same 
linear combination of their neighbors.

• Shifting the output after the weighted combination vs. shifting the input and 
then doing weighted combination is the same- so shift-invariance.

• That’s why it’s called linear shift-invariance filter.

– LSI for short, but more commonly known by the name of the 1D signal filter- LTI, 
linear time-invariant.



Convolution

• Let 𝑓 be the image, ℎ be the kernel of size (2𝑘 + 1)𝑋(2𝑘 + 1) (𝑘 is a chosen 
integer), and 𝑔 be the output image:

– Note: by definition, this operator flips the kernel both horizontally and vertically.

• This operation is called convolution operator and is more compactly notated 
as:

• Very similar to cross correlation only here the flip of the kernel is done.



Example: mean filter

• The kernel is: 

• Replaces pixel with local average.

• Has smoothing (blurring) effect.

• The kernel can be in any other size as well (see .ipynb).
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Note that we assume that the kernel 
coordinates are centered.

Here the kernel is symmetric 
horizontally and vertically, so the 

flipping is not noticeable.
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Gaussian filter

• Another kind of blur filter.

• this filter can be controlled by its size and STD.

• The kernel is discretized to bins according to the wanted kernel size.

• Isn’t Gaussian function infinite?

– Most often, the kernel cuts out the remaining lower bins (usually at 2-3 𝜎).

• Both Gaussian and mean filters are good against Gaussian noise, but not 
effective against S&P noise.



Median filter

• Takes the median value from the given neighbors.

• For example:

– The median of [1, 0, 100] is 1.

• Median filter is good against salt and pepper noise & against Gaussian noise 
(but not as effective).

– Can be considered as a blur filter, but also has edge preserving properties.

• Median filter is more computationally expansive than mean/gaussian.

• This filter is not LTI because it’s not linear on some weights.



contents

• Noise and filtering

• Frequency representation

• Decimation

• Interpolation 



Fourier transform

• Each periodic signal can be represented as a collection of cosine functions 
added together- these is called Fourier transform (FT).

– [we will leave the exact definition aside… This is not a signal processing course]

• A cosine function can be represented by 3 variables: 

– Frequency: 𝑓 [Hz]

– Amplitude: 𝐴

– Phase: 𝜙

𝑔 𝑡 = 𝐴 ⋅ 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜙)

• Demo: https://www.desmos.com/calculator/metjpkf2e5

https://www.desmos.com/calculator/metjpkf2e5


Fourier transform

• FFT (fast Fourier transform) is an 
efficient algorithm to decompose a 
signal into its collection of added 
cosine functions: frequency, amplitude 
and phase.

• Most of the times, when talking about 
the FFT of a signal, you’ll see graph of 
the frequencies and their belonging 
amplitudes (the phase is omitted).

• FFT examples: 
http://www.jezzamon.com/fourier/

http://www.jezzamon.com/fourier/


Fourier transform

• When doing FT/FFT of a signal, one also get negative frequencies.

– Why? Again, out of scope… this is the uniqueness of the Fourier transform and 
its ability to work on complex signals.

– When the signal is real, the Fourier transform is symmetric and hence most of 
the time the negative part is erased.

– The same is true for 2D signals, but there we tend to keep the symmetric part.



2D FFT

• Like in 1D signals, 2D signals also have FFT.

• 2D cosine wave is represented as such:
𝑔 𝑥, 𝑦 = 𝐴 ⋅ 𝑐𝑜𝑠(2𝜋(𝑢𝑥 + 𝑣𝑦) + 𝜙)

• The FFT of such a signal returns the amplitude, phase and directional 
frequency (𝑢 & 𝑣)



2D FFT examples



2D FFT examples



2D FFT examples



2D FFT examples



2D FFT

• In audio signals (or any other 1D signals) Lower frequencies change less over 
time than higher frequencies.

– In images, the change is represented in change in distance, so images that 
changes slowly from pixel to pixel has more lower frequencies then others.

• Natural images are mainly built from low frequencies.

Low 
frequencies

High 
frequencies



2D FFT

• 2D FFT demo: http://www.jezzamon.com/fourierl#jpegs

– [Actually DCT (discrete cosine transform) but it’s a good demo none the less)

http://www.jezzamon.com/fourierl#jpegs


Convolution in frequency domain

• Recall: in time (space) domain:

• In frequency domain- simple multiplication:



Low-pass filters

• Both mean and Gaussian filters are considered low-pass filters because in the 
frequency domain, they have higher values in the lower frequencies- and 
when multiplied with frequency spectrums, the high frequencies get smaller.

• When image is left only with the lower frequencies, the rapidly changes parts 
of the image (e.g.: edges, noise) are smoothen.



LP example



FFT of gaussian noise

• Since gaussian noise (AWGN) is distributed along all frequencies, LP filter 
reduce this kind of noise significantly.



Mean vs. Gaussian filter

• Since Mean filter has some high values in high frequencies, 
edge artifacts sometimes remains.

• Gaussian filter has less artifacts in higher frequencies.



More applications with frequencies

• Forensics 

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf

http://www.robots.ox.ac.uk/~az/lectures/ia/lect2.pdf


More applications with frequencies



contents

• Noise and filtering

• Frequency representation

• Decimation

• Interpolation 



Image Scaling

This image is too big to fit on the 
screen. How can we generate a 
half-sized version?

Source: S. Seitz



Image sub-sampling

• Throw away every other row and column to create a 1/2 size image.

– Called image sub-sampling or decimation.

• Naïve subsampling examples:

1/4

1/8

Source: S. Seitz



Image sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)1/2

Source: S. Seitz



Source: F. Durand

Image sub-sampling



Even worse for synthetic images

Source: L. Zhang



• Occurs when the sampling rate is not high enough to capture the amount of 
details in the image.

• Can give the wrong signal/image—an alias.

• To do sampling right, need to understand the structure of your signal/image

• To avoid aliasing:

▪ sampling rate ≥ 2 * max frequency of the image.

▪ This minimum sampling rate without aliasing is called the Nyquist rate.

Source: L. Zhang

Aliasing



Nyquist limit – 2D example

Good sampling

Bad sampling



Nyquist limit- frequency response

• Original frequency 
representation of signal.

• Regular sampling above nyquist 
rate- can recreate the original 
frequencies of the image. (copies 
are from sampling).

• Sampling below nyquist- original 
frequencies are destroyed due to 
the copies overlap- this is the 
aliasing.



Example: wagon-wheel effect

• An example of sub sampling in time domain (instead of spatially like before).

• Without the dot, the wheel appears to be rotating slowly backwards 
(counterclockwise).

• https://en.wikipedia.org/wiki/File:Propeller_strobe.ogv

• https://en.wikipedia.org/wiki/File:The_wagon-wheel_effect.ogv

https://en.wikipedia.org/wiki/File:Propeller_strobe.ogv
https://en.wikipedia.org/wiki/File:The_wagon-wheel_effect.ogv


Gaussian pre-filtering

• Solution: filter the image, then subsample

G 1/4

G 1/8

Gaussian 1/2

Source: S. Seitz



Subsampling with Gaussian pre-filtering

• Solution:  filter the image, then subsample

G 1/4 G 1/8Gaussian 1/2

Source: S. Seitz



Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2

Source: S. Seitz



Low pass filtering- frequency response



Back to the checkerboard

• What should happen when you make the checkerboard smaller and smaller?

Naïve subsampling Proper prefiltering
(“antialiasing”)

Image turns grey! (Average of 
black and white squares, 
because each pixel contains 
both.)



Gaussian pre-filtering

• Solution: filter the 
image, then subsample

blur

F0   H*

subsample blur subsample …
F1

F1   H*

F2
F0



blur

F0   H*

subsample blur subsample …
F1

F1   H*

F2
F0

Gaussian pyramid



Gaussian pyramid



Gaussian pyramid



contents

• Noise and filtering

• Frequency representation

• Decimation

• Interpolation 



Upsampling

• This image is too small for this 
screen:

• How can we make it 10 times as big?

• Simplest approach: repeat each row 
and column 10 times (“Nearest 
neighbor interpolation”)

• This operation is known as 
upsampling or interpolation.



Upsampling



Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

Upsampling
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